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Abstract

Conventional system identification procedures require that input data or at least an estimate of the input
be used in the parameter estimation process. In many ‘real’ mechanical systems inputs are not readily
measured, as in automotive road vehicle data in which the input to the tire patch of the tires from the road
is neither measurable nor easy to estimate. A new method for nonlinear system identification of mechanical
systems, in the absence of an input measurement, using a combination of time and frequency domain
techniques is presented here. In the time domain, restoring force plots are used to characterize the frequency
and amplitude characteristics of the nonlinearities. These observed nonlinear characteristics are then used
in the output-only formulation of the nonlinear identification through feedback of the outputs frequency
domain parameter estimation technique to build a model with linear and nonlinear frequency response
functions, which can be used to predict the response of the system. The method is applied to experimental
tire-vehicle suspension system data.
r 2004 Elsevier Ltd. All rights reserved.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Much work has been done in the area of nonlinear system identification for mechanical
systems. Mohammad et al. [1] introduced the direct parameter estimation method,
which uses recursive least squares to estimate the parameters of a linear or nonlinear
multidegree-of-freedom system given just one input. Richards and Singh [2] presented a
‘‘reverse path’’ spectral method, which was derived from Bendat’s [3] earlier work for
single input nonlinear systems, for the identification of multidegree-of-freedom nonlinear
systems for Gaussian random inputs. Roberts et al. [4] presented a spectral method for
estimating nonlinear parameters in cases when it is either impractical or impossible to measure the
excitation process. The unmeasured excitation was modeled as a stationary stochastic process
with zero mean.
Masri et al. [5,6] presented a time domain method that uses recursive least squares along with

modal analysis for linear parameter identification and a non-parametric method for expressing the
nonlinear characteristics in terms of orthogonal functions. Yi and Hedrick [7] studied a technique
for identifying nonlinear system parameters based on a least-squares method and a ‘‘sliding
observer’’ that allows the estimation of signals that are difficult or expensive to measure. Adams
and Allemang [8] introduced the frequency domain nonlinear identification through feedback of
the outputs (NIFO) method, which decouples the linear and nonlinear dynamics of a system and
estimates the linear and nonlinear components in one computational step. This approach is
expanded upon in the present paper to permit the use of response data in the absence of input
measurements.
Most of the prior research recognizes that proper characterization of the nonlinearities

in a system is necessary for applying system identification processes. Popular
characterization techniques include frequency deconvolution [9], Hilbert transforms [10,11],
and wavelet transforms [12]. In addition, Storer and Tomlinson [13] used higher-order
frequency response functions to characterize nonlinear structural dynamic systems.
Cafferty et al. [14] used the restoring force method to characterize the dynamic
properties of automotive dampers and Audenino and Belingardi [15] also recognized the merit
of this method.
This literature survey presents a small but representative portion of the research in the

area of nonlinear system characterization and identification for mechanical systems.
All of these prior system identification methods require an input measurement or at
least an estimate of the input. Identification and even characterization in the absence of an
input measurement has not been studied in detail. In many types of mechanical systems, like tire-
vehicle suspension systems, the input measurement is not readily measurable when taking
operating data.
In this paper, a system identification approach is presented that uses both time and frequency

domain techniques to develop a model of a system with both linear and nonlinear functions in the
absence of an input measurement. In this approach, the restoring force method is used to
characterize the frequency and amplitude characteristics of the nonlinearities observed in the
system. The attractive aspect of the restoring force method is that it only requires the output
acceleration measurements of the degrees-of-freedom between which the nonlinearities are to be
characterized. The NIFO frequency domain method is then formulated in terms of the responses
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of the system. The characteristics of the nonlinearities observed in restoring force plots are used in
NIFO to identify the operating point response of the system in addition to the nonlinear
contributions. This approach provides a frequency domain model that describes how the system
responses change with changes in both input amplitude and frequency.
The next section establishes a framework for the proposed approach. The approach is then

applied to experimental vehicle data to demonstrate its validity. The time domain characterization
procedure (restoring force method) is described first followed by the frequency domain
identification procedure (NIFO).
2. Framework

2.1. Restoring force

The restoring force is an internal force that opposes the motion of an inertial element within a
system, e.g., the left-hand side of Newton’s Second Law for a body with constant mass, m, and
acceleration vector, a : SF ¼ ma: The stiffness and damping in a system resist the motion of a
given inertia; consequently, the forces in the stiffness and damping elements are referred to as
components of the restoring forces. Individual nonlinearities have particular restoring forces;
therefore, nonlinearities can be characterized by the restoring forces within a system.
Broadly speaking, restoring forces can be ‘‘static’’ or ‘‘dynamic’’ in nature. Static nonlinearities

produce restoring forces that depend only on the instantaneous relative displacement or relative
velocity between two connection points. Several common examples of static nonlinearities
associated with particular stiffness and damping characteristics are shown in Fig. 1. Dynamic
nonlinearities, which are usually characterized by differential operators, give rise to restoring
forces that depend not only on the present displacement and velocity, but also on the history of
the motion. An example of such a nonlinearity is a nonlinear hysteretic stiffness. The present
paper considers only static nonlinearities.
As mentioned previously, the chief advantage of the restoring force technique is that it only

requires that the output accelerations of a system be measured. Consider the two degree-of-
freedom quarter car model shown in Fig. 2. The equations of motion for this system are given by

M1 €x1 þ ðC1 þ C2Þ _x1 � C2 _x2 þ ðK1 þ K2Þx1 � K2x2 þ N1½x1ðtÞ; x2ðtÞ; _x1ðtÞ _x2ðtÞ�

þ N2½x1ðtÞ; xbðtÞ; _x1ðtÞ _xbðtÞ� ¼ C1 _xb þ K1xb

M2 €x2 � C2 _x1 þ C2 _x2 � K2x1 þ ðK2 þ K3Þx2 ¼ N1½x1ðtÞ;x2ðtÞ; _x1ðtÞ _x2ðtÞ�; ð1Þ

where xk(t) are the displacements of the unsprung and sprung masses, Mk, xb(t) is
the displacement of the tire patch, Ck and Kk are the damping and stiffness in the tire and
suspension, N1½x1ðtÞ; x2ðtÞ; _x1ðtÞ _x2ðtÞ� denotes the nonlinear forces in the suspension and
N2½x1ðtÞ; xbðtÞ; _x1ðtÞ _xbðtÞ� denotes the nonlinear forces in the tire.
The second equation, for the sprung mass, M2, can be rearranged to give the following

expression for the restoring force in the suspension:

M2 €x2 ¼ �C2ð _x2 � _x1Þ � K2ðx2 � x1Þ � K3x2 þ N1½x1ðtÞ;x2ðtÞ; _x1ðtÞ; _x2ðtÞ�: (2)
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Fig. 1. Idealized forms of simple structural, (b) cubic hardening stiffness, (c) piecewise-linear stiffness, (d) saturation

force, (e) clearance force and (f) Coulomb friction damping compared to a linear stiffness restoring force (a).
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Fig. 2. Quarter car model.
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Fig. 3. Velocity restoring force in suspension system showing change in nonlinear damping with frequency for constant

input amplitude at 0.5mm stroke at the tire patch: (a) 3.8Hz base excitation; (b) 5Hz; (c) 8.4Hz; and (d) 14.2Hz.

Fig. 4. Velocity restoring force in suspension system showing change in nonlinear damping with amplitude for constant

frequency input at 3.8Hz at the tire patch: (a) 0.5mm base excitation; (b) 2.0mm; (c) 3.0mm; and (d) 4.0mm.
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The plot between the acceleration of the sprung mass and the relative velocity between the sprung
mass and the unsprung mass allows the damping restoring force in the suspension to be
characterized. Similarly, the plot between the acceleration of the sprung mass and the relative
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displacement between the sprung mass and the unsprung mass allows the stiffness restoring force
in the suspension to be characterized. Figs. 3 and 4 show the damping restoring force plots for
different input frequencies (3.8–14.2Hz for Fig. 3(a)–(d)) at constant amplitude (0.5mm) and
different amplitudes (0.5–4.0mm for Fig. 4(a)–(d)) at constant frequency (3.8Hz). Note that both
frequency and amplitude dependence of the nonlinearities are observed in the suspension system
of an experimental vehicle, thereby requiring that a frequency domain system identification
method be employed to properly characterize nonlinear changes with amplitude and linear
changes with frequency.
This example demonstrates that only response measurements for the sprung mass and the

unsprung mass are needed to characterize certain nonlinearities in the suspension system.
Furthermore, in experimental system identification, acceleration measurements are the most
convenient measurements to make and can also be integrated to estimate velocity and
displacement time histories so restoring force methods are especially appropriate for experimental
purposes. Note, however, that the static (DC) components of the velocity and displacement time
histories are lost in the integration process; consequently, certain types of nonlinearities such as
quadratic stiffness nonlinearities, which produce steady streaming (i.e., a DC response), may be
difficult to identify.
2.2. Nonlinear identification through feedback of the outputs (NIFO)

The nonlinearities present in a system create unmeasured, correlated internal feedback forces in
the linear model of the system. In other words, in nonlinear systems, the external inputs act
together with the internal nonlinear feedback forces on the underlying linear system to produce
the measured outputs of the system. This combination of external and internal forces is evident in
the following impedance model formulation for an arbitrary lumped parameter mechanical
system,

½BLðoÞ�fX ðoÞg ¼ fF ðoÞg �
XN

i¼1

miðoÞfBnigX niðoÞ; (3)

¼ fFðoÞg þ fFnðoÞg; (4)

where ½BLðoÞ� is the linear impedance matrix, miðoÞ are the nonlinear (frequency
dependent) coefficients, X niðoÞ are scalar Fourier transforms of the nonlinear restoring
forces of the outputs, which account for the internal feedback forces, and N is the number of
nonlinearities included in the model. Each non-zero element of incidence vector, fBnig; is either a 1
or a �1; these elements determine the location of the nonlinearity. A different fBnig and X niðoÞ
pair is used to model each nonlinear element in the system. Fig. 5 illustrates the concept of internal
feedback by the nonlinearities and superposition of the external forces and the internal feedback
forces.
The NIFO parameter estimation formulation is derived from Eq. (3) by multiplying both sides

of the equation on the left by the linear system (square) FRF matrix, ½HLðoÞ�; and separating the
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Fig. 5. Feedback by nonlinearities into a linear vibrating system illustrating the superposition of the external forces and

the internal feedback forces.
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measured and unmeasured quantities as follows:

fX ðoÞg ¼ ½½HLðoÞ�½HLðoÞ�m1ðoÞfBn1ðoÞg½HLðoÞ�m2ðoÞfBn2ðoÞg

�½HLðoÞ�mNðoÞfBnNðoÞg� �

fF ðoÞg

X n1ðoÞ

X n2ðoÞ

..

.

X nN

0
BBBBBB@

1
CCCCCCA

0
BBBBBBBBB@

1
CCCCCCCCCA
: ð5Þ

If the inputs and the outputs can be measured, and because the nonlinear functions can be
calculated explicitly in terms of the measured inputs and the outputs, the set of equations in
Eq. (5) can be used to estimate the best unbiased least-squares estimate of the linear FRFs at the
forced DOFs and the nonlinear parameters miðoÞ at forced and unforced DOFs in a single step. It
is important to note that although most system identification procedures tend to associate the
nominal linear FRFs in ½HLðoÞ� with the lowest level measured input and output data, many
nonlinear mechanical systems contain nonlinearites that are most severe for the lowest level
excitations. Moreover, nonlinearites like Coulomb friction damping forces, which are not
continuous, do not significantly affect the dynamics for large relative motions, indicating that the
nominal linear FRFs in ½HLðoÞ� are actually associated with high-level input and output data.
More will be said about this issue in the context of the experimental results in Section 3.
When the input cannot be measured, the formulation for NIFO must be modified. This

modification is best explained in the context of an example. Consider the two DOF quarter car
model illustrated in Fig. 2. The equation of motion for the sprung mass (ignoring damping) can be
written in the frequency domain for zero initial conditions as follows when the nonlinear elements
in Fig. 2 are taken to be frequency independent,

ð�o2M2 þ K2 þ K3ÞX 2ðoÞ ¼ K2X 1ðoÞ

þ m1X n1ðoÞ þ m2X n2ðoÞ: ð6Þ

In this equation, X n1ðoÞ and X n2ðoÞ are the Fourier transforms of two particular suspension
nonlinear restoring forces of interest, called ‘describing functions’, and m1 and m2 are the
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corresponding nonlinear coefficients, assumed constant here, that determine the nonlinear
weightings. This equation can be rewritten in the following form to highlight the presence of the
nominal linear transmissibility function:

X 2ðoÞ ¼
K2

�o2M2 þ K2 þ K3
X 1ðoÞ þ

m1
�o2M2 þ K2 þ K3

X n1ðoÞ

þ
m2

�o2M2 þ K2 þ K3
X n2ðoÞ: ð7Þ

Note that the coefficient of X 1ðoÞ; K2=ð�o2M2 þ K2 þ K3Þ; is equal to the transmissibility
between the body and wheel displacements of the underlying linear two DOF system (i.e., ratio of
X 2ðoÞ to X 1ðoÞ when m1 and m2 are both identically zero); consequently, the nonlinear terms in the
second and third expressions on the right hand side of this equation determine the extent to which
the system vibrates away from the operating point due to the presence of the nonlinearities.
If the linear transmissibility function is replaced with the notation T21ðoÞ; Eq. (7) can be written

in matrix form as

X 2ðoÞ ¼ T21ðoÞ
m1
K2

T21ðoÞ
m2
K2

T21ðoÞ
h i X 1ðoÞ

X n1ðoÞ

X n2ðoÞ

2
64

3
75: (8)

Eq. (8) relates the wheel response at the spindle, which acts as an input to the vehicle body in
addition to the two nonlinear restoring forces, to the body response and is equivalent to a three
input, single output frequency domain model. Because the three inputs are not completely
correlated at any given frequency, a least-squares parameter estimation procedure can be carried
out to calculate the three coefficient functions in the row matrix on the right-hand side of the
equation using spectral averaging via cross- and auto-power spectra. For example, if repeated
runs using broadband stochastic (random) excitation are carried out, the results from each can be
assembled as shown in Eq. (9):

fX 2ðoÞ1 X 2ðoÞ2 : X 2ðoÞNavg g1�Navg
¼ T21ðoÞ

m1
K2

T21ðoÞ
m2
K2

T21ðoÞ
h i

1�3

�

X 1ðoÞ1 X 1ðoÞ2 : : X 1ðoÞNavg

X n1ðoÞ1 X n1ðoÞ2 : : X n1ðoÞNavg

X n2ðoÞ1 X n2ðoÞ2 : : X n2ðoÞNavg

2
664

3
775
3�Navg

; ð9Þ

where Navg is the number of spectral averages. In order to solve this equation for the given
number of spectral averages, the Hermitian transpose of the matrix on the right-hand side is
multiplied on the right of both sides of the equation, thus producing cross- and auto-power
matrices with the body response data matrix and itself. These matrices are then amenable to
standard cumulative spectral processing operations via H1 or H2 calculations, whichever is more
appropriate for the given assumptions regarding measurement noise. In this work, it is assumed
that the measurements are relatively noise free but that the small amount of noise that is present
contaminates the X2 (body side) data only. Note that unlike linear system identification, even
uncorrelated response measurement noise can seriously corrupt the parameter estimates for
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nonlinear systems because the nonlinear describing functions (i.e., X n1ðoÞ and X n2ðoÞ) always
result in correlated noise.
It is evident from the formulation in Eq. (9) that nonlinearities must first be characterized prior

to applying the system identification procedure because the describing functions are needed to
form the matrix on the far right-hand side of Eq. (9). Hence, nonlinear characterization via the
time domain restoring force technique described earlier is a very important first step in the
following system identification procedure.
3. Experimental verification

The system identification procedure presented in the previous section is applied to laboratory
vehicle data in this section.

3.1. Experimental setup

Response data were taken on the front left tire of an Isuzu Impulse using a hydraulic shaker
apparatus. The fact that the vehicle had an independent front suspension meant that the results
from the left and right front tires were the same and so only data from the front left tire were used.
A picture of the experimental setup is shown in Fig. 6. The MTSs hydraulic shaker, with a
maximum dynamic pressure of 3000 psi, an input frequency range of 0–100Hz and a maximum
stroke of approximately 8 in, was used to excite the tire patch of the car with different types of
Fig. 6. Shaker testing setup with single corner of vehicle shown.
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inputs in the vertical direction. Although small motions were also observed in the lateral and
longitudinal directions, only vertical motions will be considered here because they were dominant
in the tests. Tri-axial accelerometers of nominal sensitivity 1V/g were attached at the upper strut
connection with the body €x2ðtÞ; representing the sprung mass and the spindle €x1ðtÞ; representing
the unsprung mass, to measure the accelerations of these two DOFs. The displacement of the
wheel pan (i.e., tire patch) was measured directly using the LVDT internal to the hydraulic
actuator.
The signals were recorded with an IOTECHs Portable Data Acquisition System and converted

into ‘.mat’ files for further analysis in MATLABs. The IOTECHs system allowed a wide range
of sampling frequencies and the application of high- and/or low-pass filters to remove noise and
aliasing from higher-frequency components.

3.2. Nonlinear characterization

As described earlier, the first step in system identification is the characterization of the observed
nonlinearities in the system. A very slow chirp input to avoid abnormal transitions through
nonlinear resonances (i.e., lingering bifurcations or other effects) from 0 to 15Hz, at a rate of
0.025Hz/s, was used as the base excitation for this purpose. The acceleration response
measurements were taken and then integrated off-line to estimate the velocity and displacement
responses. The signal processing parameters that were used are given in Table 1. A 50Hz
bandwidth low-pass filter was used to reduce aliasing back into the frequency range of interest
from approximately 3–35Hz.
Velocity (damping) and displacement (stiffness) restoring force curves were generated for

different input amplitudes and frequencies. Fig. 7 shows two representative restoring force curves
for an input amplitude of 0.5mm and an input frequency of 3.8Hz. The first curve, Fig. 7(a), is a
function of the velocity and the second curve, Fig. 7(b), is a function of the displacement. The
velocity curve (Fig. 7(a)) shows a nonlinear damping characteristic with both saturation
(Coulomb friction damping curve) and hysteresis. The displacement curve 7(b) shows a nonlinear
stiffness characteristic with primarily hysteresis (i.e., backlash). These two types of nonlinearities
are present to various degrees across the entire frequency range. At this point in the
characterization procedure, it is not clear whether or not hysteresis is present in the strut
damping characteristic, strut stiffness characteristic or both. Note that the only nonlinearities
present in Fig. 7 (and Figs. 3 and 4) are within the strut because no tire nonlinearities contribute
to the forces on the body or the curves in these plots.
Recall that Fig. 3, which was mentioned earlier, shows the change in nonlinear strut damping

force with frequency at a constant 0.5mm input amplitude. The trends in the curves of
Table 1

Signal processing parameters for the chirp input

Chirp range (Hz) Chirp rate (Hz/s) Number of time

points, Nt

Sampling

frequency, Fs (Hz)

Low-pass filter

(LPF) cut-off (Hz)

0–15 0.025 180,000 300 50
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Fig. 7. (a) Nonlinear shock damping showing saturation at a certain relative clearance velocity and (b) nonlinear

hysteretic stiffness showing backlash characteristic in both damping and stiffness; input amplitude 0.5mm and input

frequency 3.8Hz.
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Figs. 3(a)–(d) indicate that some of the nonlinear effects decrease as the frequency increases. This
trend occurs because an increase in frequency results in an increase in stroke velocity and, hence, a
gradual movement of the system away from the central hysteresis loop in Fig. 3(a) to the outer
relatively linear portion of the restoring force curve in Fig. 3(d). It is anticipated that this
linearization of the system damping force at higher frequencies will be reflected in the system
identification results.
Fig. 4 shows the change in nonlinear damping force with amplitude at a constant frequency of

3.8Hz. The damping characteristic changes from a saturation type in Fig. 4(a) to a piecewise-
linear form in Fig. 4(d), in which positive relative velocities suffer more saturation than negative
velocities, as anticipated in a typical shock absorber. This type of asymmetric nonlinearity is
desirable to improve handling when traversing negative obstacles (i.e., potholes) without
disturbing ride when traversing positive obstacles (i.e., speed bumps). The multiple loops in the
restoring force curves, as shown in Fig. 3(c), are due to the presence of harmonics of the
fundamental frequency in the data, which we recall was taken for a slowly varying chirp
displacement input at the base of the tire.
Having characterized the properties of the nonlinearities, these nonlinear describing functions

can now be used in a frequency domain parameter estimation algorithm such as NIFO for
nonlinear system identification.

3.3. Nonlinear system identification

NIFO was applied to random input data with a Gaussian distribution for various input
amplitudes ranging from 0.5 to 7.0mm RMS displacements of the wheel pan (i.e., tire patch). The
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Table 2

Signal processing parameters for spectral averaging with random input

Time

points, Nt

Sampling

frequency,

Fs (Hz)

Block size,

BS

Number of

averages,

Navg

Overlap Window

type

LPF cut-

off (Hz)

FRF

estimator

180,000 600 6144 60 52% Flattop 200 H1

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

M
ag

. X
2/

X
b

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

Frequency [Hz]

Frequency [Hz]

M
ag

. X
2/

X
1

(a) 

(b) 

Fig. 8. Magnitudes of measured transmissibility functions between: (a) the tire patch and body side of the strut and (b)

the spindle and the body for four different levels of excitation: —, 0.5mm; – – –, 1.0mm;?, 2.5mm; and – � –, 7.0mm.
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signal processing parameters used in these post-processing operations are given in Table 2. In this
section, nonlinear identification is first used to develop linear and nonlinear models between the
spindle and body using response data only (transmissibility). Then the input data at the tire patch
is used to show that the effects of the tire are negligible in this operating range.
Fig. 8(a) shows the transmissibility functions between the sprung mass (x2) and the tire patch

(xb) and Fig. 8(b) shows the transmissibility functions between the sprung mass (x2) and the
unsprung mass (x1) for four different excitation amplitudes: (—) 0.5mm, (– – –) 1.0mm, (?)
2.5mm and (– � –) 7.0mm. Input amplitudes less than 0.5mm produced noisy data and are not
used in this analysis. There are clear changes in the transmissibility magnitudes, with and without
using the input measurement, (xb), indicating the presence of nonlinearity in the strut and possibly
the tire as well (Fig. 8(a)). It should be noted that tire nonlinearities do not influence the
transmissibility plot between the sprung mass and the unpsrung mass (Fig. 8(b)) because tire
nonlinear restoring forces do not act directly on the body, M2.
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Two types of dominant nonlinearities observed in the restoring force data are considered here:
(1) nonlinear shock damping (in the form of both Coulomb friction damping and a deadzone
nonlinearity to introduce piecewise-linear damping at higher amplitudes) and (2) hysteretic
stiffness (in the form of backlash or mechanical/hydraulic ‘play’). Because the restoring force plots
in Fig. 4(a)–(d) indicate that the hysteretic stiffness effect dominates in the 0.5–1.0mm amplitude
range whereas the piecewise-linear shock damping effect dominates in the 1.0–7.0mm range, the
system identification procedure is carried out in two steps: first, the hysteretic nonlinearities are
identified; and second, the piecewise-linear damping nonlinearities are identified. It was also
determined that this two-step approach avoided poor conditioning in the NIFO parameter
estimation routine, which does not perform as well when more than one correlated nonlinearity is
included in the algorithm simultaneously.
When Coulomb friction is placed in series with a stiffness element, it produces a hysteretic

stiffness characteristic that strongly resembles that shown in Fig. 7(b) according to Ferri [16].
Therefore, although Coulomb friction damping is present in the strut as is evident in Fig. 4(a), it is
assumed that it can be accounted for in the form of the nonlinear hysteresis and piecewise-linear
damping characteristics in the amplitude range from 0.5 to 7.0mm. This statement is supported
by the trends previously described in the subplots in Figs. 3 and 4.

3.3.1. Backlash nonlinearity

Consider the hysteretic (backlash) effects in stiffness. Hysteresis in damping was initially
considered; however, its effects were small compared to those in stiffness (refer to Fig. 7(a) and (b)
for comparison of velocity and displacement ranges over which backlash was observed). The
NIFO parameter estimation procedure was carried out as follows for the backlash nonlinearity.
First, the backlash restoring force characteristic shown in Fig. 9(a) was generated using a
deadband of 0.00043m based on Fig. 7(b). Note the presence of additional paths back and forth
in Fig. 9(a) due to the random response as compared to the single loop seen in Fig. 7(b). It is also
observed that the horizontal portions of the hysteresis loops in Fig. 7(b) all occur at the same
levels, while those in Fig. 9(a) occur at different horizontal levels. This may indicate that an Iwan-
type nonlinearity (series connection of a Coulomb friction element and a linear spring) may be
more appropriate, however, it is not pursued here. Second, this describing function was used in
the NIFO parameter estimation equations (Eq. (9)) for this single source of nonlinearity given the
1.0mm input (tire patch displacement) and output (wheel and body acceleration) data. The
estimated NIFO functions in this case consist of (1) the estimated true nominal linear
transmissibility between the wheel and body, and (2) the nonlinear parameter ratio, m1ðoÞ=K2;
associated with the backlash describing function in Eq. (8). The nonlinear parameter m1ðoÞ=K2

can be thought of as a correction factor, which is applied to the describing function to bring the
high- and low-input amplitude data into agreement.
Fig. 9(b) shows plots of the transmissibility magnitudes for three different input levels (0.5, 1.0

and 7.0mm) for reference as well as the NIFO estimate of the nominal linear transmissibility
function T21ðoÞ: The absence of data below 1.5Hz is due to the poor low-frequency accuracy
obtained using the numerical integrations required to estimate the displacement time histories
from the measured acceleration responses. Note that the estimated linear transmissibility function
(—) is in good agreement with the 0.5mm input level transmissibility measurement (?). The
variations between these two functions could be due either to errors in the backlash describing
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Fig. 10. Real (—) and imaginary (?) parts of estimated NIFO parameter, m1ðoÞ=K2; for backlash describing function

in Fig. 9(a) indicating near zero imaginary part and nearly constant real part as a function of frequency.
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Fig. 9. (a) Backlash describing function between the spindle and body in the strut used in NIFO parameter estimation

procedure and (b) magnitudes of measured transmissibility functions between the spindle and body for: ?, 0.5mm;

– – –, 1.0mm; and – � –, 7.0mm input levels with the NIFO estimate (—) of a near zero level input using the 1.0mm

data.
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function or to additional effects of the backlash nonlinearity if the input level were reduced
further from 0.5mm. The corresponding nonlinear parameter, m1ðoÞ=K2; for the backlash
nonlinearity is plotted in Fig. 10. The real (—) and imaginary (?) parts indicate that m1ðoÞ=K2 is
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nearly constant as a function of frequency and entirely real. This result implies that the describing
function used in Fig. 9(a) is a reasonable choice for this amplitude range.
In order to verify that the tire has negligible effects in this amplitude and frequency range, the

nominal linear transmissibility, H11ðoÞ; between the tire patch and the wheel was estimated as well
using the NIFO parameter estimation algorithm with the backlash describing force in Fig. 9(a)
and the 1.0mm input data. The relevant frequency domain parameter estimation equations for
NIFO in this case are given in Eq. (10):

X 1ðoÞ

X 2ðoÞ

" #
¼

H11ðoÞðK1 þ joC1Þ �m1ðoÞðH11ðoÞ � H12ðoÞÞ

H12ðoÞðK1 þ joC1Þ �m1ðoÞðH21ðoÞ � H22ðoÞÞ

" #

�
X bðoÞ

X n1ðoÞ

" #
; ð10Þ

where all variables are as defined for Eq. (5) and it is additionally assumed here that the tire
behaves relatively linear in this amplitude range with the damping and stiffness coefficients
indicated in Fig. 2. Note that X n1ðoÞ corresponds to the Fourier transform of the backlash
describing function in Fig. 9(a). Also, note that because H22ðoÞ cannot be estimated without an
input directly applied to the body, NIFO must focus on the first equation in Eq. (10) in order to
estimate the nonlinear parameter, m1ðoÞ=ðK1 þ joC1Þ; by dividing the second entry of the first row
of the parameter matrix by the difference between the entries in the first column.
Fig. 11 shows a plot of the H11ðoÞ estimate for a near zero level input compared to the other

input level measurements. As in Fig. 9(b), there is good agreement between the zero level H11ðoÞ
NIFO estimate (—) and the 0.5mm input level measurement (?) as expected. The only significant
errors between these two functions are in the 7–10Hz range. These three results (Figs. 9(b), 10 and
11) indicate that the dominant nonlinearity in the path between the input and the body in the
0.5–1.0mm input range is a backlash stiffness nonlinearity (Fig. 9(a)) in the strut. The estimated
nonlinear parameter results for m1ðoÞ=ðK1 þ joC1Þ obtained using the input data are not
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Fig. 11. Magnitudes of measured transmissibility functions between the tire patch and wheel for: ?, 0.5mm; – – –,

1.0mm; and – � –, 7.0mm input levels with the NIFO estimate (—) of a near zero level input using the 1.0mm data.
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discussed here because they require knowledge of the nominal tire stiffness and damping
coefficients, which are beyond the scope of this investigation.
3.3.2. Clearance nonlinearity

Next consider the transition from primarily hysteretic damping to a typical piecewise-linear
shock damping near 1.0mm input amplitude (refer to Figs. 4(a) and (b)). It is evident that as the
input amplitude is further increased from 1.0 to 7.0mm, the overall damping restoring force
changes from nearly all saturation-type to piecewise-linear in nature. Although there is clearly
asymmetry in the piecewise-linear damping characteristic obtained in the restoring force plot in
Fig. 4(d), symmetry is assumed here because the use of asymmetrical damping was not observed
to produce significantly improved results.
The form of the deadzone describing function used in the subsequent NIFO parameter

estimation algorithm in the input amplitude range from 1.0 to 7.0mm is shown in Fig. 12(a).
Recall that this nonlinear form ensures that in addition to the linear damping that is present in the
steepest portion of the restoring force loops in Fig. 7(a), an additional and sudden gain in
damping in the shock occurs at approximately 0.03m/s (and symmetrically –0.03m/s) as the input
amplitude is increased. In other words, as the relative velocity across the shock increases, the steep
damping characteristic in Fig. 4(a) decreases in a piecewise-linear manner in Figs. 4(b)–(d) due to
the additional effects of the nonlinear describing function in Fig. 12(a). The 1.0mm input
amplitude response was taken as the lowest input amplitude level in this application of the NIFO
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Fig. 12. (a) Clearance (deadzone) describing function between the wheel and body in the strut used in NIFO parameter

estimation procedure and (b) magnitudes of measured transmissibility functions between the spindle and body for: ?,

0.5mm; – – –, 1.0mm; and – � –, 2.5mm input levels with the NIFO estimate (—) of a near 1.0mm level input using the

2.5mm data.
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identification technique because the clearance nonlinearity began to emerge just above a 1.0mm
tire patch displacement.
When the nonlinear dead-zone characteristic was used in the NIFO parameter estimation

procedure, the wheel and body response data for 5.0mm (higher operating level) produced the
NIFO estimate of T21ðoÞ shown in Fig. 12(b) for the 1.0mm transmissibility function (lower
operating level). Note that the NIFO estimate (—) is in good agreement with the 1.0mm input
level transmissibility (– � –) and deviates only slightly in the lower frequency range from 6 to 8Hz.
The NIFO estimate matches particularly well above 20Hz indicating that nonlinear shock
damping dominates in that frequency range.
The estimate of the nonlinear coefficient, m2ðoÞ=K2; is shown in Fig. 13. The real (—) and

imaginary (?) parts indicate that m2ðoÞ=K2 is almost entirely imaginary and varies as a function
of frequency. The nonlinear parameter is imaginary because although the nonlinear clearance
force is proportional to the relative velocity across the strut, it is in phase with the relative
displacement resulting in a 901 phase shift of the describing function’s effects in the NIFO
parameter estimation algorithm. Also, note that this estimate exhibits frequency dependence in
the frequency range of interest. The frequency-dependent nature of the shock damping is expected
and was discussed previously in Section 3.2 in the context of the restoring force data in Fig. 5.
Moreover, the decrease in m2ðoÞ=K2 for increasing frequency supports the trends seen in the
restoring force plots from Fig. 5(a)–(d) in which the nonlinear limiting nature of the shock
damping becomes less apparent as the frequency in the sine sweep increases. This latter point
emphasizes one of the advantages of the proposed approach for nonlinear system identification,
that is, the NIFO technique accommodates both nonlinear and frequency-dependent character-
istics, which are both found in the majority of mechanical systems.
In order to verify that the tire has negligible effects in this amplitude and frequency range, the

nominal linear transmissibility, H11ðoÞ; between the tire patch and the wheel was estimated as for
the backlash nonlinearity in the lower amplitude range. Fig. 14 shows a plot of the H11ðoÞ
estimate for an input level near 1.0mm compared to several other input level measurements. As in
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Fig. 13. Real (—) and imaginary (?) parts of estimated NIFO parameter, m2ðoÞ=K2; for clearance describing function
in Fig. 12(a) indicating near zero real part and nearly constant imaginary part as a function of frequency.
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Fig. 14. Magnitudes of measured transmissibility functions between the tire patch and wheel for: ?, 0.5mm; – – –,

1.0mm; and – � –, 2.5mm input levels with the NIFO estimate (—) of a near 1.0mm level input using the 2.5mm data.
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Fig. 12(b), there is good agreement between the 1.0mm level H11ðoÞ NIFO estimate (—)
and the 1.0mm input level measurement (– – –). Thus, the resulting model based on the
use of the nominal linear transmissibility function in Fig. 12(b) at 1.0mm and the nonlinear
parameter in Fig. 13 can be used to describe the amplitude and frequency dependencies of the
strut in the amplitude range from 1.0 to 2.5mm. These three results (Figs. 12(b), 13 and 14)
indicate that the dominant nonlinearity in the path between the input and the body in the
1.0–2.5mm input range is a piecewise-linear shock damping nonlinearity (Fig. 12(a)) in the strut.
Similar results hold for the higher amplitude ranges as well when tire nonlinearities are included in
the analysis.
4. Conclusions

It was demonstrated using vehicle data over given amplitude (0.5–2.5mm) and frequency
(2–30Hz) ranges that nonlinear mechanical system models can be identified from experimental
data using a frequency domain method (NIFO) even in the absence of input data at the tire patch.
It was noted that in many mechanical systems, inputs are not readily measured or estimated,
including applications where vehicle operating data is taken and post-processed to develop
engineering design models. A combination of time domain techniques (restoring force method)
and frequency domain system identification algorithms (NIFO) was applied for specific amplitude
ranges, from 0.5 to 1.0mm and 1.0 to 2.5mm, thereby avoiding ill conditioning in the parameter
estimation process, to first characterize and then identify the frequency and amplitude
characteristics of the nonlinearities in a test vehicle. Results were verified using the nonlinear
model to estimate measured transmissibilities at various amplitudes with and without the
hydraulic shaker input at the tire patch.
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